# SpaceShipOne Program Summary



By Burt Rutan

This is NOT a presentation about the SpaceShipOne (Tier-1) test program nor about details of the design and fabrication of SS1 and its systems.

This presentation tells the story of how a small aircraft development company approached the challenge of sub-orbital manned spaceflight, and the lessons learned from the experience.

### Paul Allen

### An unusual aerospace customer.









The research opportunity was unique, due to Paul's passion for spaceflight.

Paul was a customer that allowed those closest to the technical arena to make the decisions on what risks to take (critical for any research program).

This was a private contract for a program conducted covertly until the completed spaceship was unveiled.

Further information can be seen in Paul's book "Idea Man", and in two Discovery video documentaries titled "Black Sky".

## Performance of Rutan-Designed Manned Aircraft Pre-2004



# The Big Jump into Space 2004



# SpaceShipOne Baseline Mission



**Glide after De-Feather** 

80-kft to landing 22 minutes at 105 KEAS Max range available > 60 miles Touchdown at 75 KEAS

# The View from 120 Km altitude



# History

# Manned Sub-orbital Space Flight Altitude greater than 100 km Four flights, all more than 40 years ago





Mercury-Redstone Alan Shepard - 1962 Gus Grissom - 1962

B-52 and X-15 Joe Walker Two flights in 1963

## Comparison with X-15 - 100-km altitude mission



- Program Goal, primarily high speed
- Trajectory  $\sim 40 \text{ deg for boost and entry}$
- Weightless for ~ 3.5 minutes
- Pilot-controlled pull-up during entry
- Entry max  $q \sim 1000 \text{ psf} (550 \text{ KEAS})$
- Lakebed landing
  - 270 KEAS approach
  - 180 KEAS touchdown



- Program Goal, altitude & view
- Trajectory ~ near-vertical
- Weightless for ~ 3.5 minutes
- "Care-free" entry ~ 60 deg AOA
- Entry max  $q \sim 80 \text{ psf}$  (160 KEAS)
- Runway landing
  - 105 KEAS approach
  - 75 KEAS touchdown



## Brief Outline of Program milestones:

On contract with customer Paul Allen - March 2001.

Prelim design complete – WK1 May 2001, rocket motor July, 2001 and SS1 Jan, 2002.

Propulsion component contracts with eAc and SpaceDev – October, 2001.

Fabrication start, WK1 – June, 2001. First Flight WK1 – 1 Aug 02.

First rocket ground firing (With flight components, 15-sec burn) – 21 Nov 02.

Fabrication start, SS1 – May 2002. Rollout SS1 April 03.

Launch aircraft demo flight during SS1 unveiling - 18 April 03 (WK1 flight 21).

Un-manned captive carry of SS1 - 20 May 03 (WK1 flight 24).

Full-duration ground firings eAc – 24 Jul 03, SpaceDev – 31 Jul 03.

Manned captive carry of SS1 – 29 July 03.

First Glide of SS1 - 7 Aug 03. Second glide flight, including feathered descent, 27 Aug 03.

First Rocket flight of SS1 (supersonic climb, 15-second burn) – 17 Dec 03 (100 yr. after WB).

First 100+ km space flight (The major Program Goal) – 21 June 2004.

X-Prize flights – 29 Sept 2004 and 4 Oct 2004.

Installation ceremony, Milestones of Flight Gallery Smithsonian NASM – October 2005.

# An Aggressive Flight Test Program

- White Knight, Pre-Spaceship
  - Performance, Stability & Space Systems Development
  - 56 flights, 10 Months
- Rocket Hot-Fire Ground Tests
  - R & D nine months, eleven firings
  - Flight qualification Three Firings



- SpaceShipOne Flight Tests
  - Two captive carry (one manned)
  - Glide tests 7 glides, 4 months
  - Rocket Powered Envelope Expansion – 4 flights, last one >100km
  - X-Prize 2 full-performance flights in 5 days



## Some Early concept sketches for SS1

Model 267, Feb 1995 Yep, a real napkin sketch

Model 280, Apr 1996

Propulsion separates after boost.







# Original Launch Concept 1995 A Proteus design constraint

Proteus, offset mounting



Launch after pull-up Altitude ~ 27,000 ft Gamma = 40+ degrees



# Selected Configuration Mid 2000 • Level launch, boost-pull to vertical • "Care-free" entry, "feathered" wing-tail • Glide landing on runway Entry Boost & Landing Configuration Configuration

Model 318 White Knight and Model 316 SpaceShipOne Configuration when Paul Allen Contract started (March 2001)



Some selected slides Early Program Description

## Air Launch

A new dedicated Launch Aircraft (Model 318) releases the Spaceship in level flight above 50,000 feet

Launch Aircraft also functions as a Spaceship training platform and Spaceship systems development tool.



## Boost phase is at low q - start high and go steep

- After air launch, the spaceship glides clear, then ignites the rocket motor.
- Pull-up and accel to Mach 3+ vertical velocity.
- Low aero loads during boost due to high launch altitude.
- Burnout occurs within the atmosphere. Spaceship then coasts out of the atmosphere.
- Simple control system: elevons and rudders control trajectory during boost. Electric stab trim augments the manual control at high-q.
- Propulsion thrust vector control system is not required.





### Atmospheric entry is carefree using single-mode, super stability

- Single-mode, super-stability (feather shuttlecock) for entry.
- Trim controls azimuth, other axes are passive/ carefree.
- All reversible controls are ineffective during entry.
- Low ballistic coefficient, low thermal protection required.
- Max reentry g occurs above 100,000 ft. Subsonic below 85,000 ft.
- Low aero loads. Dynamic pressure only 15% of the X-15. Max g is less than 6. Approximately 20 sec time above 3 g.
- Feather retraction occurs during subsonic descent (pilot option 10,000 ft to 80,000 ft).







## **Pilot Training and Qualification**

- Fixed-base Simulator
  - Actual spaceship cockpit with all flight controls
  - Flight hardware avionics for flight director
  - Full-flight performance simulation
  - Projection TV outside view
  - Helmet forces for gsimulation, 2 axis

- Launch aircraft has SpaceShip cockpit
  - Identical: seats, windows, controls & avionics
  - Flight director commands pull-up for boost training
  - Zoom at low altitude allows 20 sec of zero-g
  - Descending windup turn duplicates reentry g profile
  - Spoilers and drag brakes use SpaceShip controls and systems
  - Glide landing profile allows realistic approach training





### Integrated Hybrid Propulsion System New Design - Breakthrough In Simplicity

- Integrated liquid Nitrous/solid fuel hybrid
  - Simple mounting is light, robust and accurate
  - Nitrous tank mounts as a full SpaceShip structural bulkhead
  - Motor/fuel/nozzle component has single flange
  - Single valve: starting/throttle/shutoff/dump/ vent
  - Significant reduction of leak paths/failure modes
  - Safe storage, non-toxic, self pressurizing, room temperature oxidizer
  - Safe storage, non-toxic, cast-in-place fuel





# Seating and Crew Restraint

- Seats are a continuous composite shell
  - Light structure designed for energy absorption
  - Minimum hard-point attachments to Pressure vessel, removable
- Conformal crew-unique cushions are laced to seat structure

# Avionics

- Navigation/Flight Director
  - New unit, based on FunTech RacerView INS/GPS system, battery operated
  - Flight director provides boost steering commands for trajectory and to projected reentry location
  - Flight director provides approach steering commands for projected touchdown location
  - INS calculates and displays position, attitude, alpha, beta and Ve
  - Backup system includes attitude/GPS/Vi/Hi
- Data system: T/M and on-board recording, analog and digital
- System to be tested on six applications before first space flight
  - Flight simulator for boost, RCS, glide and landing tasks
  - All full-scale propulsion tests
  - Aerobatic light aircraft for boost training
  - Range validations at 50,000 ft/200 miles on Proteus
  - Identical system used on the Model 318 launch aircraft
  - Glide tests with Spaceship

# Aerodynamic Analysis

CFD: Fluent & other codes

Stability and controllability analysis for all flight modes

100

Aug 22, 2000



The Re-entry Feather Immune to accidents caused by entry flight controls

Forces Ship to a Stable High Alpha Condition Active controls not needed

- High Drag = Lower loads & Lower Heat
- Result: 'Care-Free' atmospheric entry









# Summary

- Goal is validation of business plan for pilot training or tourism
  - Adequate flights to verify specific affordability targets.
- Program is structured for brisk schedule at acceptable risk
  - Parallel development of launch aircraft, Spaceship, Avionics, propulsion and training systems.
  - High-risk propulsion internal components were competed using two vendors.
- Program is stand-alone: independent of outside assets
- New Intellectual Property
  - Model 316 Spaceship design
  - Carefree reentry concept
  - New hybrid motor configuration
  - Affordable Space avionics
  - Launch aircraft design

### **Rocket Propulsion Development**

- A new Hybrid motor was developed in-house:
  - All-composite oxidizer tank with titanium flanges. ATK provided the final Cf filament-wind overwrap.
  - All-composite motor case/throat/ nozzle integrated component. AAE provided the tape-wrap component.
- Interior components competed with two small vendors:
  - Both vendors supplied components for separate ground firings.
  - The selected vendors supplied components for the manned rocket flights. eAc components were selected for fill/dump/vent.

SpaceDev components were selected for injector/valve/bulkhead/ controller.









## Propulsion Testing with eAc components



## Propulsion Testing with SpaceDev components



#### **Breech Test**





#### Cabin static pressure.



Flutter GVT



Window Damage Tolerance at 2x operating pressure (proof test at 3.5x)

Some other ground tests



ECS, CO2 scrubbing





Static load proof, feather structure.



#### Crewchief Steve Losey & aerodynamist Jim Tighe

loading a motor



### Steve and his Baby Spaceship



# Roll-out - Unveil

April, 2003 Customer was not identified until 9 months later.

#### WK unveiled airborne



Cliff Robertson and some friends



Mac Faget and Buzz Aldrin









X-Prize Award Event in St Louis November, 2004 Scaled got the Trophy, Paul got the check.



















### X-Prize \$

### Distribution of the 10M\$

Paul Allen, MAV, Scaled Employees, Scaled Stockholders







# Collier Trophy March, 2005



# Designer of the Year – Design News Jim Tighe March, 2005





## **Aviation Week Award**

## March 2005

## Smithsonian NASM



National Air and Space Museum Trophy For Current Achievement March, 2005



### SpaceShipOne Installation

### Milestones of Flight Gallery, National Air and Space Museum

October, 2005



# Lessons Learned

- A talented team can, and should occasionally tackle a challenge well beyond their past performance. This is the only path that will sustain our market share of the research business.
- Always try to build a true competition when subcontracting work that involves research. The contracts for the rocket components structured an environment that saved cost, saved time and forced/allowed the competitors to take the risks needed to meet program goals.
- There is nothing like an exciting, historic, risky, milestonerelated program to motivate technically-capable people. The future benefits for the individuals and for the company are real and sustainable.
- Programs like Tier1 encourage/allow the company to take future steps for growth and for building an environment that breeds the breakthroughs that are needed to stay competitive.